

## *Bioremediation of the Kępina reservoir in Zduńska Wola by using allochthonous biopreparations. Results and effectiveness in improving water quality*

# Bioremediacja zbiornika Kępina w Zduńskiej Woli z zastosowaniem biopreparatów allochtonicznych. Wyniki i skuteczność w poprawie jakości wód



DOI: 10.15199/62.2025.11.13

Zbiornik Kępina w Zduńskiej Woli (8 ha, głębokość 1,2–2 m, HRT 13–24 h) zmagał się z eutrofizacją, zakwitami sinic i osadami organicznymi. W 2024 r. przeprowadzono bioremediację mikrobiologiczną z użyciem biopreparatów allochtonicznych. Analiza wyników (08.08.2024–02.09.2025) wykazała spadek grubości osadów dennych o 36%, wzrost przejrzystości wody o 44,4% oraz zawartości tlenu (przy powierzchni o 17%, przy dnie o 44%). To wynik aktywności mikroorganizmów rozkładających frakcje organiczne, mimo wpływu dopływu z rzeki Pichny. Krótki hydrauliczny czas retencji sugeruje, że zmiany mogą częściowo wynikać z wahania hydrologicznych, jednak dane wskazują na skuteczność bioremediacji. W celu weryfikacji trwałości efektów zaleca się monitorowanie dopływu. Studium potwierdza potencjał metod mikrobiologicznych w rekultywacji zbiorników zdegradowanych.

**Słowa kluczowe:** bioremediacja, biopreparaty allochtoniczne, jakość wody, eutrofizacja

Eutrofizacja zbiorników wodnych, wynikająca z nadmiernego dopływu biogenów, jest kluczowym problemem ekologicznym. Prowadzi ona do nadmiernego wzrostu biomasy glonów i sinic, co powoduje spadek stężenia tlenu, śniecicie ryb, degradację jakości wody i obniżenie

*The Kępina reservoir in Zduńska Wola (8 ha, depth 1.2–2 m, hydraulic retention time 13–24 h) was bioremediated to remove eutrophication and cyanobacterial blooms, and to limit organic sediment accumulation. The microbial bioremediation was conducted in 2024 by using allochthonous biopreparations. Analysis of results in Sep. 2025 showed a 36% reduction in bottom sediment org. fraction, a 44.4% increase in water transparency, and an increase in oxygen content (surface 17%, bottom 44%). These effects were achieved despite the influence of inflow from the Pichna River. The study confirmed the potential of microbial methods in the reclamation of degraded reservoirs.*

**Keywords:** bioremediation, allochthonous biopreparations, water quality, eutrophication

*Eutrophication of water bodies, resulting from excessive nutrient inflow, is a key ecological problem. It leads to excessive growth of algal and cyanobacterial biomass, causing a decline in oxygen levels, fish kills, water quality degradation, and reduced biodiversity<sup>1, 2</sup>. This issue is*



PhD Eng. Mateusz JAKUBIAK (ORCID: 0000-0003-3792-6053) is an assistant professor at the Faculty of Mining Surveying and Environmental Engineering at AGH University of Krakow. Completing a research internship (2024–2025) at the Polytechnic Institute of Tomar (IPT), Portugal. His research interests include topics in environmental economics, aquatic ecosystems in urban areas, aquaculture, and the use of UAVs in environmental monitoring.

Dr inż. Mateusz JAKUBIAK (ORCID: 0000-0003-3792-6053) jest adjunktem na Wydziale Geodezji Górnictwa i Inżynierii Środowiska AGH w Krakowie. Odbędą staż naukowy (2024–2025) w Polytechnic Institute of Tomar (IPT) w Portugalii. Jego zainteresowania badawcze obejmują tematy z zakresu ekonomii ekologicznej, ekosystemów wodnych na terenach zurbanizowanych, akwakultury oraz wykorzystania BSP w monitoringu środowiska.



Dr. Robert MAZUR (ORCID: 0000-0001-7869-1823) is an assistant professor at the Faculty of Mining Surveying and Environmental Engineering at AGH University of Krakow. His research interests include transformations of organic pollutants in aquatic environments, including municipal and industrial wastewater.

Dr Robert MAZUR (ORCID: 0000-0001-7869-1823) jest adiunktem na Wydziale Geodezji Górnictwa i Inżynierii Środowiska AGH w Krakowie. Jego zainteresowania badawcze obejmują przejęte zanieczyszczeń organicznych w środowiskach wodnych oraz w ściekach komunalnych i przemysłowych.

\* Address for correspondence/Adres do korespondencji:

Katedra Kształtowania i Ochrony Środowiska, Wydział Geodezji Górnictwa i Inżynierii Środowiska, Akademia Górnictwo-Hutnicza im. Stanisława Staszica w Krakowie, al. Mickiewicza 30, 30-059 Kraków, tel.: (12) 617-52-14, e-mail: jakubiak@agh.edu.pl

bioróżnorodności<sup>1, 2)</sup>. Problem ten jest szczególnie nasilony w płytowych akwenach retencyjnych, takich jak zbiornik Kępina w Zduńskiej Woli, charakteryzujący się krótkim czasem retencji hydraulicznej HRT (*hydraulic retention time*), wynoszącym 13–24 h. Zmienny dopływ wody z rzeki Pichny dodatkowo destabilizuje hydrologiczne i chemiczne warunki zbiornika, wprowadzając zmienne stężenia biogenów i zawiesiny. Literatura naukowa wskazuje, że eutrofizacja nie tylko pogarsza walory rekreacyjne i użytkowe wód, ale także destabilizuje łańcuchy pokarmowe, co potwierdzają badania nad wybranymi jeziorami w Europie, w których spadek tlenu w warstwach przydennych o 30–50% był przyczyną wielu problemów ekosystemów wodnych w zdegradowanych jeziorach<sup>3, 4)</sup>.

W odpowiedzi na te wyzwania bioremediacja mikrobiologiczna zyskuje na znaczeniu jako ekologiczna alternatywa dla tradycyjnych metod chemicznych (np. stosowanie koagulantów) i mechanicznych (usuwanie osadów). Metoda ta opiera się na wykorzystaniu biopreparatów, w tym mikroorganizmów allochtonicznych, takich jak wyselekcjonowane szczepy bakteryjne (np. *Bacillus subtilis*, *Pseudomonas fluorescens*), wprowadzane do środowiska w celu przyspieszenia rozkładu materii organicznej, redukcji biogenów oraz poprawy fizykochemicznych parametrów wody. Przegląd literatury z ostatnich dekad wskazuje na rosnącą skuteczność tej metody w różnych typach zbiorników. Na przykład, w badaniach przeprowadzonych na 33 polskich jeziorach i stawach w latach 2014–2023, zastosowanie biopreparatów typu EM (*effective microorganisms*) doprowadziło do dwukrotnego zmniejszenia grubości miękkich frakcji organicznych osadów dennych SOF (*soft organic fraction*) oraz poprawy przejrzystości wody nawet do ponad 40%, przy jednoczesnym wzroście zawartości tlenu do ponad 30% w warstwach przydennych<sup>4–6)</sup>. Podobne efekty zaobserwano w jeziorze Turawa, gdzie aplikacja EM zmniejszyła liczbę bakterii z grupy coliform o 48–90% oraz zwiększyła aktywność enzymów dehydrogenazowych, wspierając regenerację strefy litoralnej i rozwój makrofitów<sup>7)</sup>. Integracja bioremediacji z innymi metodami, takimi jak biomanipulacja i zarządzanie makrofitami, również przynosi obiecujące rezultaty. W jeziorach subtropikalnych Chin połączenie biomanipulacji z transplantacją roślin podwodnych (np. *Elodea nuttallii*) pozwoliło na znaczące obniżenie zawartości fosforu całkowitego P<sub>og.</sub> oraz zmniejszenie biomasy glonów, co

*particularly pronounced in shallow retention reservoirs, such as the Kępina reservoir in Zduńska Wola, which has a short HRT of 13–24 h. The variable inflow from the Pichna River further destabilizes its hydrological and chemical conditions, introducing fluctuating nutrient and suspended solid concentrations. Scientific literature indicates that eutrophication not only diminishes the recreational and functional value of water bodies but also disrupts food chains. This is supported by studies on selected European lakes, where a 30–50% reduction in oxygen levels in bottom layers was a major cause of ecosystem issues in degraded lakes<sup>3, 4)</sup>.*

*In response to these challenges, microbiological bioremediation is gaining importance as an ecological alternative to traditional chemical (e.g. coagulant use) and mechanical (sediment removal) methods. This approach relies on microorganisms, including allochthonous biopreparations with selected bacterial strains (e.g. *Bacillus subtilis*, *Pseudomonas fluorescens*) introduced into the environment to accelerate the decomposition of organic matter, reduce nutrients, and improve the physicochemical parameters of water. A review of literature from recent decades highlights the increasing effectiveness of this method across various water bodies. For instance, studies conducted on 33 Polish lakes and ponds between 2014 and 2023 showed that the application of effective microorganisms (EM) biopreparations led to a twofold reduction in soft organic sediment fractions (SOF), improved water transparency by over 40%, and increased oxygen levels by more than 30% in bottom layers<sup>4–6)</sup>. Similar effects were observed in Lake Turawa, where EM application reduced coliform bacteria by 48–90% and enhanced dehydrogenase enzyme activity, supporting the regeneration of the littoral zone and the development of macrophytes. Integrating bioremediation with other methods, such as biomanipulation and macrophyte management, also yields promising results.*

*Biomanipulation and macrophyte management also yield promising results. In subtropical Chinese lakes, combining biomanipulation with the transplantation of submerged plants (e.g. *Elodea nuttallii*) significantly reduced total phosphorus (TP) concentrations and algal biomass, consistent with numerous studies showing that this approach improves water quality. Observed reductions in TP to below 50 µg/L and algal biomass by over 70% confirm the effec-*



Dr. Eng. Agata MAZUR graduated doctoral studies at AGH University of Krakow, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, Department of Environmental Management and Protection. Her research interests include transformations of organic pollutants in aquatic environments, including municipal and industrial wastewater.

Dr inż. Agata MAZUR ukończyła studia doktoranckie w Katedrze Zarządzania i Ochrony Środowiska na Wydziale Geodezji Górczej i Inżynierii Środowiska AGH w Krakowie. Jej zainteresowania badawcze obejmują przemiany zanieczyszczeń organicznych w środowiskach wodnych, w tym w ściekach komunalnych i przemysłowych.



PhD Luís SANTOS (ORCID: 0000-0003-1006-4131) professor, Director of the Department of Archeology, Conservation and Restoration and Heritage (UDACRP) at Polytechnic Institute of Tomar (IPT), Portugal. An environmental biologist specialized in natural resources management and freshwater ecology. His research interests include nature reserves, environmental impact assessment, ecological building solutions, and ecotourism.

Dr Luís SANTOS (ORCID: 0000-0003-1006-4131) jest profesorem, dyrektorem na Wydziale Archeologii, Konserwacji i Restauracji oraz Dziedzictwa (UDACRP) w Instytucie Politechnicznym w Tomar (IPT) w Portugalii. Jest biologiem środowiskowym specjalizującym się w zarządzaniu zasobami naturalnymi i ekologii wód słodkich. Jego zainteresowania badawcze obejmują ponadto rezerwy przyrody, ocenę oddziaływanie na środowisko, ekologiczne rozwiązania budowlane i ekoturystykę.

jest zgodne z licznymi badaniami wykazującymi, że takie podejście prowadzi do poprawy jakości wód. Obserwowany spadek zawartości  $P_{\text{org}}$  do wartości poniżej 50  $\mu\text{g/L}$  oraz znaczące zmniejszenie biomasy glonów, sięgające ponad 70%, potwierdzają skuteczność tej metody w ograniczaniu eutrofizacji<sup>8,9)</sup>. W przypadku krótkiego HRT, jak w Kępinie (tabela), bioremediacja musi uwzględniać szybką wymianę wody, co może ograniczać trwałość efektów, ale wspiera lokalne procesy rozkładu miękkich frakcji organicznych w osadach dennych i wzrost zawartości tlenu w warstwach przydennych.

Przedstawiono wyniki bioremediacji mikrobiologicznej zbiornika Kępina, przeprowadzonej w 2024 r. z użyciem biopreparatów allochtonicznych. Analiza obejmuje zmiany SOF, przejrzystości wody oraz zawartości tlenu w warstwach powierzchniowej i przydenniej, oparte na pomiarach z okresu sezonów wegetacyjnych 2024–2025. Celem badań była ocena skuteczności metody w warunkach dynamicznego dopływu z rzeki Pichny oraz weryfikacja jej wpływu na poprawę jakości wody, z uwzględnieniem potencjalnych ograniczeń wynikających z hydrologii zbiornika.

## Część doświadczalna

### Materiały

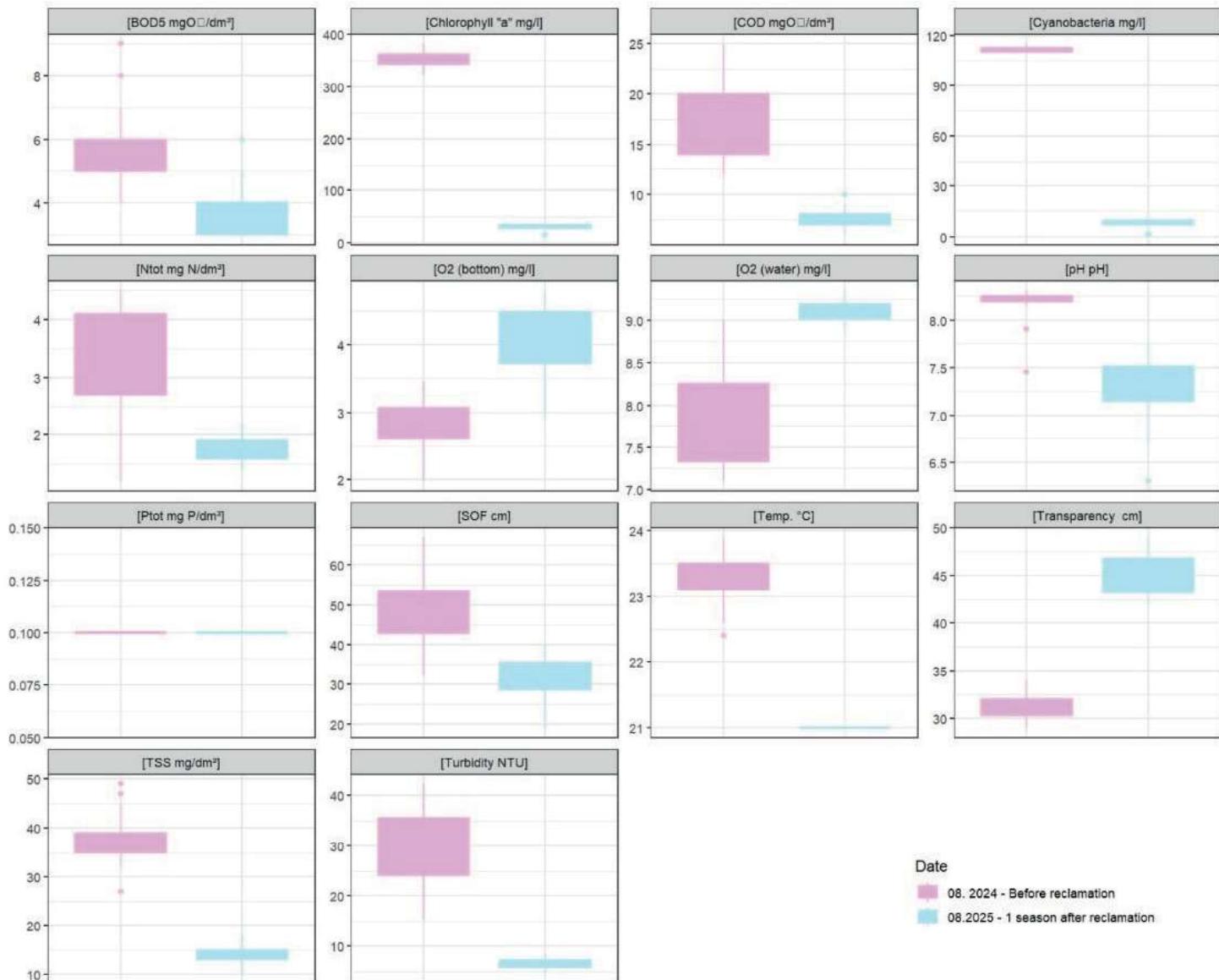
Do badań jakościowych z wyznaczonych miejsc zbiornika pobrano próbki wody oraz SOF osadów dennych podczas 2 niezależnych kampanii terenowych. Próbki poddano analizie laboratoryjnej w celu określenia ich parametrów fizykochemicznych i mikrobiologicznych.

Table. Hydromorphological characteristics of the Kępina reservoir in Zduńska Wola

Tabela. Charakterystyka hydromorfologiczna zbiornika Kępina w Zduńskiej Woli

| Parameter/Parametr                           | Value/Wartość                                                                                                                                                    |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location/Lokalizacja                         | Zduńska Wola, Łódź Voivodeship, on the Pichna River/Zduńska Wola, woj. łódzkie, na rzece Pichnie                                                                 |
| Reservoir type/Typ zbiornika                 | retention, artificial/retencyjny, sztuczny                                                                                                                       |
| Year of construction/Rok budowy              | 1988–1989                                                                                                                                                        |
| Surface area/Powierzchnia                    | 8 ha                                                                                                                                                             |
| Maximum depth/Głębokość maksymalna           | 2 m                                                                                                                                                              |
| Average depth/Głębokość średnia              | ~1.6 m (approximated, based on the range of 1.2–2 m)/(przybliżona, na podstawie zakresu 1,2–2 m)                                                                 |
| Capacity/Pojemność                           | 92,500 $\text{m}^3$ (at normal water level)/(przy normalnym poziomie piętrzenia)                                                                                 |
| Shoreline length/Długość linii brzegowej     | 1.46 km                                                                                                                                                          |
| Catchment area/Zlewnia                       | Pichna River/rzeka Pichna                                                                                                                                        |
| Hydrological functions/Funkcje hydrologiczne | water retention, flood prevention, reserve reservoir for the fire brigade/retencja wód, zapobieganie powodziom, zbiornik rezerwuarowy dla straży pożarnej        |
| Ecological status/Stan ekologiczny           | moderate, undergoing bioremediation (2024–2025)/umiarkowany, w trakcie bioremediacji (2024–2025)                                                                 |
| Purification methods/Metody oczyszczania     | microbiological bioremediation, planned microbubble aeration (from 2025)/bioremediacja mikrobiologiczna, planowane napowietrzanie mikropęcherzykowe (od 2025 r.) |
| Surroundings/Otoczenie                       | Paprocki Forest, walking and cycling paths, recreational areas/Las Paprocki, ścieżki pieszo-rowerowe, tereny rekreacyjne                                         |
| Bottom topography/Ukształtowanie dna         | flat, natural terrain depression/płaskie, naturalne zagębienie terenu                                                                                            |

tiveness of this method in mitigating eutrophication<sup>8,9)</sup>. In cases of short HRT, as in the Kępina reservoir (Table), bioremediation must account for rapid water exchange, which may limit the longevity of effects but supports local decomposition of soft organic sediment fractions (SOF) and improves oxygen levels in bottom layers. This article presents the results of microbiological bioremediation of the Kępina reservoir, conducted in 2024 using allochthonous biopreparations. The analysis covers SOF changes in bottom sediments, water transparency, and oxygen content in surface and bottom layers, based on measurements from the period of the 2024–2025 growing seasons.. The aim is to evaluate the method's effectiveness under dynamic inflow conditions from the Pichna River and to assess its impact on water quality improvement, considering potential limitations due to the reservoir's hydrology.


## Experimental

### Materials

For qualitative studies, samples of water and SOF of bottom sediment fractions were collected from selected water bodies during 2 independent field campaigns. The samples underwent laboratory analysis to determine their physicochemical and microbiological parameters.

### Equipment

Measurements were conducted using advanced laboratory and field equipment. Chemical oxygen demand (COD) and biochemical oxygen demand ( $\text{BOD}_5$ ) were determined



## Aparatura

Pomiary przeprowadzono z wykorzystaniem zaawansowanego sprzętu laboratoryjnego i terenowego. Do oznaczania chemicznego zapotrzebowania na tlen (ChZT) oraz biochemicznego zapotrzebowania na tlen (BZT<sub>s</sub>) użyto spektrofotometru UV-Vis oraz systemu analitycznego Sensomat (Lovibond). Stężenia związków biogennych określano za pomocą spektrofotometrii UV-Vis, stosując standardowe metody analityczne. Przejrzystość wody mierzono przy użyciu krążka Secchiego, a grubość warstwy osadów dennych oceniano, łącząc obserwacje z kamery podwodnej z pomiarami geodezyjnymi. Parametry fizykochemiczne, takie jak pH, temperatura oraz stężenie rozpuszczonego tlenu (DO), rejestrowano za pomocą multimetru Hach Lange HQ 2100 wyposażonego w dedykowane sondy.

using a UV-Vis spectrophotometer and the Sensomat analytical system (Lovibond). Nutrient concentrations were measured via UV-Vis spectrophotometry, employing standard analytical methods. Water transparency was assessed using a Secchi disk, while the thickness of bottom sediment layers was evaluated by combining underwater camera observations with geodetic measurements. Physicochemical parameters, such as pH, temperature, and dissolved oxygen (DO) concentration, were recorded using a Hach Lange HQ 2100 multimeter equipped with dedicated probes.

## Methods

The study on the effectiveness of microbiological bioremediation of the Kępina reservoir began with preliminary monitoring of water quality at designated sampling and

## Metodyka badań

Badania nad efektywnością metody bioremediacji mikrobiologicznej zbiornika Kępina rozpoczęto od wstępniego monitoringu jakości wody w wyznaczonych miejscach poboru próbek i pomiarów terenowych. W sierpniu 2024 r. przeprowadzono pomiary terenowe, podczas których określono grubość osadów dennych, przejrzystość wody oraz stężenie tlenu rozpuszczonego w warstwach powierzchniowych i przydennych. Dodatkowo, w celu szczegółowej oceny stanu zbiorników, wykonano laboratoryjne analizy chemiczne i mikrobiologiczne pobranych próbek wody i osadów.

Zawartość fosforu całkowitego ( $P_{\text{og.}}$ ) oraz azotu całkowitego ( $N_{\text{og.}}$ ) mierzono za pomocą spektrofotometru Spectroquant® NOVA z odczynnikami Merck Millipore, w odpowiednio dobranych zakresach stężeń. ChZT oznaczano spektrofotometrycznie przy użyciu Spectroquant NOVA 60 A, zgodnie z procedurą producenta dla odczynników Merck Millipore w zakresie 4,0–40,0 mg/L. BZTs określano metodą OxiTop.

Pomiary terenowe wykonywano, stosując multimetra Hach Lange HQ 2100 z sondami do analizy wód powierzchniowych, który kalibrowano przed każdym użyciem. Stężenie tlenu rozpuszczonego mierzono w warstwach powierzchniowych i przydennych, a grubość SOF oceniano jako wskaźnik zawartości materii organicznej i procesów biogeochemicznych w zbiornikach. Badania terenowe przeprowadzono w 10 wytypowanych punktach pomiarowych. W badaniach wykorzystano przenośny spektrofluorometr AlgaeTorch (model AlgaeTorch 100, bbe Moldaenke GmbH) do pomiarów chlorofilu a i fikocyaniny, wykonując serię zanurzeniowych pomiarów w wodzie zbiornika w różnych punktach lokalizacji (głębokość 0,1–0,5 m, 3–5 powtórzeń na punkt).

Zebrane dane poddano analizie statystycznej z wykorzystaniem oprogramowania R (R Core Team, 2023) oraz Microsoft Excel.

## Dyskusja wyników

Monitoring jakości wody w zbiorniku Kępina w Zduńskiej Woli wykazał znaczną poprawę parametrów fizykochemicznych i biologicznych po zastosowaniu w 2024 r. bioremediacji mikrobiologicznej z użyciem biopreparatów allochtonicznych. Analiza danych sprzed i po pierwszym sezonie aplikacji (2025 r.) wskazała na obniżenie wskaźników eutrofizacji, co potwierdziło skuteczność zastosowania tej metody w płytym akwenie o krótkim czasie retencji hydraulicznej (HRT 13–24 h).

Mętność wody spadła z 29,18 NTU do 6,44 NTU (obniżenie o 78%), co wynikało z aktywności zastosowanych mikroorganizmów (biopreparatów). Literatura wskazuje, że podobne efekty (redukcja mętności o 40–60%) obserwowano w polskich jeziorach po aplikacji biopreparatów allochtonicznych<sup>4, 5)</sup>. Wzrost przejrzystości o 44,4% poprawił warunki świetlne dla makrofitów, ograniczając rozwój

field measurement sites. In August 2024, field measurements were conducted to determine the thickness of bottom sediments, water transparency, and dissolved oxygen concentrations in surface and bottom layers. Additionally, to thoroughly assess the condition of the reservoir, laboratory chemical and microbiological analyses of collected water and sediment samples were performed.

Total phosphorus (TP) and total nitrogen (TN) concentrations were measured using a Spectroquant® NOVA spectrophotometer with Merck Millipore reagents, tailored to appropriate concentration ranges. COD was determined spectrophotometrically using a Spectroquant NOVA 60 A, following the manufacturer's procedure for Merck Millipore reagents in the range of 4.0–40.0 mg/L. BOD<sub>5</sub> was assessed by the OxiTop method.

Field measurements were carried out using a Hach Lange HQ 2100 multimeter with probes for surface water analysis, calibrated before each use. Dissolved oxygen concentrations were measured in surface and bottom layers, and the thickness of the soft organic fraction (SOF) of sediments was evaluated as an indicator of organic matter content and biogeochemical processes in the reservoir. Field studies were conducted at 10 designated measurement points. A portable spectrofluorometer, AlgaeTorch (model AlgaeTorch 100, bbe Moldaenke GmbH), was used to measure chlorophyll-a and phycocyanin concentrations through a series of immersion measurements in the reservoir water at various locations (depth 0.1–0.5 m, n = 3–5 replicates per point). Collected data were subjected to statistical analysis using R software (R Core Team, 2023) and Microsoft Excel.

## Results and discussion

Monitoring of water quality in the Kępina reservoir in Zduńska Wola demonstrated significant improvements in physicochemical and biological parameters following the application of microbiological bioremediation with allochthonous biopreparations in 2024. Analysis of data before and after the first application season (2025) indicated a reduction in eutrophication indicators, confirming the effectiveness of the method in a shallow water body with a short HRT of 13–24 h.

Water turbidity decreased from 29.18 NTU to 6.44 NTU (a 78% reduction), attributed to the activity of microorganisms in the biopreparations. Literature reports similar effects, with turbidity reductions of 40–60% observed in Polish lakes following the application of allochthonous biopreparations<sup>4, 5)</sup>. The 44.4% increase in water transparency improved light conditions for macrophytes, limiting phytoplankton growth. The reduction in organic suspended solids enhanced light penetration, supporting ecosystem regeneration<sup>6, 8)</sup>.

Regarding nutrients, total phosphorus (TP) remained stable at 0.1 mg/L, suggesting no impact of the method on phosphorus, likely due to inflow from the Pichna River.

fitoplanktonu. Zmniejszenie zawartości zawiesin organicznych zwiększyło dostęp światła, wspierając regenerację ekosystemu<sup>6, 8)</sup>.

Jeśli chodzi o biogeny, to zawartość fosforu całkowitego ( $P_{og}$ ) pozostała na stałym poziomie (0,1 mg/L), co wskazało na brak wpływu zastosowanej metody na zawartość tego pierwiastka, prawdopodobnie z powodu dopływu z rzeki Pichny. Zawartość azotu całkowitego ( $N_{og}$ ) spadła z 3,26 mg/L do 1,74 mg/L (zmniejszenie o 47%), co mogło wynikać z denitryfikacji i asymilacji azotu przez bakterie. Chemiczne zapotrzebowanie na tlen (ChZT) zmalało z 17,29 mg/L do 7,67 mg/L (zmniejszenie o 56%), a biochemicalne zapotrzebowanie na tlen (BZT<sub>s</sub>) z 5,48 mg/L do 4,00 mg/L (zmniejszenie o 27%). Zawiesina całkowita (TSS) zmniejszyła się o 63%, z 37,67 mg/L do 14,10 mg/L. Wyniki te, zgodne z wynikami badań jezior Turawa i Pasternik<sup>5, 7)</sup>, wskazały na przypieszony rozkład substancji organicznych.

Stężenie tlenu rozpuszczonego w warstwie przydennej wzrosło z 2,80 mg/L do 4,03 mg/L (zwiększenie o 44%), a w warstwie powierzchniowej z 7,80 mg/L do 9,11 mg/L (zwiększenie o 17%). Zmniejszenie zawartości materii organicznej w osadach obniżyło zużycie tlenu. Grubość SOF osadów dennych spadła z 48,1 cm do 31,0 cm (zmniejszenie o 36%), co potwierdza efektywność bakterii w mineralizacji osadów<sup>4, 6)</sup>.

Parametry biologiczne uległy poprawie: stężenie chlorofilu a zmalało z 351,1 mg/L do 30,1 mg/L (zmniejszenie o 91%), a biomasa sinic z 111,6 mg/L do 7,4 mg/L (zmniejszenie o 93%). Ograniczenie zakwitu glonów wynikało z konkurencji mikrobiologicznej i ograniczenia biogenów. Podobne efekty (zmniejszenie biomasy glonów o 70–90%) odnotowano w jeziorach chińskich z biomanipulacją<sup>8, 9)</sup>.

Krótki HRT (13–24 h) można częściowo przypisywać wahaniom hydrologicznym rzeki Pichny. Stabilny poziom  $P_{og}$  wskazał na potrzebę integracji z innymi metodami, np. kontrolą dopływu biogenów lub transplantacją makrofitów<sup>8)</sup>. Wyniki są obiecujące, choć mniej wyraźne niż w akwenach o dłuższym HRT, gdzie ograniczenia biogenów sięgają 50–70%<sup>2, 3, 10, 11)</sup>. Mniejsza zmienność statystyczna (np. SD mętności z 7,87 do 1,09) wskazuje na stabilizację warunków.

## Podsumowanie

Bioremediacja mikrobiologiczna w zbiorniku Kępina w Zduńskiej Woli (2024 r.) przyniosła znaczną poprawę jakości wody. Mętność spadła z 29,18 NTU do 6,44 NTU (zmniejszenie o 78%), co poprawiło przejrzystość o 44,4%, wspierając makrofity i ograniczając fitoplankton. Zawartość azotu całkowitego zmalała z 3,26 mg/L do 1,74 mg/L (47%), ChZT z 17,29 mg/L do 7,67 mg/L (56%), a BZT<sub>s</sub> z 5,48 mg/L do 4,00 mg/L (27%). Zawartość zawiesiny całkowitej zmniejszyła się z 37,67 mg/L do 14,10 mg/L (63%). Zawartość tlenu rozpuszczonego wzrosła przy dnie z 2,80 mg/L do 4,03 mg/L

*Total nitrogen (TN) decreased from 3.26 mg/L to 1.74 mg/L (a 47% reduction), possibly due to denitrification and nitrogen assimilation by bacteria. COD dropped from 17.29 mg/L to 7.67 mg/L (a 56% reduction), and BOD<sub>s</sub> decreased from 5.48 mg/L to 4.00 mg/L (a 27% reduction). Total suspended solids (TSS) reduced from 37.67 mg/L to 14.10 mg/L (a 63% reduction). These results were consistent with studies on Lake Turawa and Pasternik<sup>5, 7)</sup> and indicated an accelerated decomposition of organic matter.*

*Dissolved oxygen concentration in the bottom layer increased from 2.80 mg/L to 4.03 mg/L (a 44% increase), and in the surface layer from 7.80 mg/L to 9.11 mg/L (a 17% increase). The reduction of SOF in sediments decreased oxygen consumption. The thickness of the SOF of bottom sediments decreased from 48.1 cm to 31.0 cm (a 36% reduction), confirming the effectiveness of bacteria in sediment mineralization<sup>4, 6)</sup>.*

*Biological parameters improved significantly: chlorophyll-a concentration dropped from 351.1 mg/L to 30.1 mg/L (a 91% reduction), and cyanobacterial biomass decreased from 111.6 mg/L to 7.4 mg/L (a 93% reduction). The suppression of algal blooms resulted from microbial competition and nutrient reduction. Similar effects (70–90% reduction in algal biomass) were observed in Chinese lakes with biomanipulation<sup>8, 9)</sup>.*

*The short HRT (13–24 h) might partially attribute changes to hydrological fluctuations from the Pichna River. The stable TP level suggests the need for integration with other methods, such as nutrient inflow control or macrophyte transplantation<sup>8)</sup>. The results are promising, though less pronounced than in water bodies with longer HRT, where nutrient reductions reach 50–70%<sup>2, 3, 10, 11)</sup>. Lower statistical variability (e.g. turbidity SD from 7.87 to 1.09) indicates stabilization of conditions.*

## Summary

*Microbiological bioremediation of the Kępina reservoir in Zduńska Wola (2024) significantly improved water quality. Turbidity decreased from 29.18 NTU to 6.44 NTU (78% reduction), enhancing transparency by 44.4%, which supported macrophytes and limited phytoplankton growth. Total nitrogen dropped from 3.26 mg/L to 1.74 mg/L (47%), COD from 17.29 mg/L to 7.67 mg/L (56%), and BOD<sub>s</sub> from 5.48 mg/L to 4.00 mg/L (27%). Total suspended solids reduced from 37.67 mg/L to 14.10 mg/L (63%). Dissolved oxygen increased at the bottom from 2.80 mg/L to 4.03 mg/L (44%) and at the surface from 7.80 mg/L to 9.11 mg/L (17%). Sediment thickness decreased from 48.1 cm to 31.0 cm (36%). Chlorophyll-a content fell from 351.1 mg/L to 30.1 mg/L (91%), and cyanobacterial biomass from 111.6 mg/L to 7.4 mg/L (93%), reducing algal blooms. Stable phosphorus levels (0.1 mg/L) suggest influence from the Pichna River inflow. The short HRT (13–24 h) might partially explain the changes.*

(44%), a przy powierzchni z 7,80 mg/L do 9,11 mg/L (17%). Grubość osadów dennych zmalała z 48,1 cm do 31,0 cm (36%). Zawartość chlorofilu a spadła z 351,1 mg/L do 30,1 mg/L (91%), a biomasy sinic z 111,6 mg/L do 7,4 mg/L (93%), ograniczając zawiązki glonów. Stabilny poziom zawartości fosforu (0,1 mg/L) wskazuje na wpływ dopływu z Pichny. Krótki HRT (13–24 h) może częściowo tłumaczyć zmiany.

## Wniosek

Wyniki potwierdzają skuteczność bioremediacji w dynamicznych akwenach miejskich. Dla trwałości efektów zaleca się dalszy monitoring, kontrolę dopływu biogenów i biomanipulację.

*Projekt badawczy współfinansowany ze środków programu „Inicjatywa Doskonałości – Uczelnia Badawcza” w AGH w Krakowie.*

## Conclusion

*The results confirm the effectiveness of bioremediation in dynamic urban water bodies. A continued monitoring, nutrient inflow control, and biomanipulation are recommended for sustained effects.*

*Research project partly supported by program „Excellence initiative – research university” for the AGH University of Krakow.*

Received/Otrzymano:

30-09-2025

Reviewed/Zrecenzowano:

03-10-2025

Accepted/Zaakceptowano:

10-10-2025

Published/Opublikowano:

18-11-2025

## REFERENCES/LITERATURA

- [1] I. Ali, E. Neverova-Dziopak, Z. Kowalewski, *Water* 2025, **17**, No. 3, 314.
- [2] E. Neverova-Dziopak, Z. Kowalewski [in:] *Eutrophication. A global environmental problem. Process management strategies*, Springer Nature, Switzerland 2025, 55.
- [3] I.J. Winfield, *Freshwater Fisheries Ecol.* 2015, 779.
- [4] R. Mazur, M. Jakubiak, L. Santos, *Sustainability* 2023, **16**, No. 1, 266.
- [5] R. Mazur, Z. Kowalewski, A. Wagner, A. Włodyka-Bergier, *Przem. Chem.* 2022, **101**, No. 9, 684.
- [6] R. Mazur, Z. Kowalewski, E. Głowienka, L. Santos, M. Jakubiak, *Sustainability* 2024, **16**, No. 9, 3716.
- [7] J. Dobrzyński, I. Kulkova, P.S. Wierzchowski, B. Wróbel, *Water* 2021, **14**, No. 1, 12.
- [8] J. Yu, Z. Liu, K. Li, F. Chen, B. Guan, Y. Hu, E. Jeppesen, *Water* 2016, **8**, No. 10, 438.
- [9] F. Wang, W. Dong, H. Wang, X. Sun, H. Song, Z. Dong, X. Lin, *Sci. Total Environ.* 2025, **990**, 179923.
- [10] M. Śliwka, M. Jakubiak, *Ecol. Chem. Eng.* 2010, **17**, No. 2-3, 298.
- [11] B. Bojarski, M. Jakubiak, P. Szczerbik, M. Bień, A. Klaczak, T. Stański, M. Witeska, *Pol. J. Environ. Stud.* 2022, **31**, No. 1, 609.

